The Combined Effect of Electrical Stimulation and High-Load Isometric Contraction on Protein Degradation Pathways in Muscle Atrophy Induced by Hindlimb Unloading
نویسندگان
چکیده
High-load isometric exercise is considered an effective countermeasure against muscle atrophy, but therapeutic electrical stimulation for muscle atrophy is often performed without loading. In the present study, we investigated the combined effectiveness of electrical stimulation and high-load isometric contraction in preventing muscle atrophy induced by hindlimb unloading. Electrical stimulation without loading resulted in slight attenuation of muscle atrophy. Moreover, combining electrical stimulation with high-load isometric contraction enhanced this effect. In electrical stimulation without loading, inhibition of the overexpression of calpain 1, calpain 2, and MuRF-1 mRNA was confirmed. On the other hand, in electrical stimulation with high-load isometric contraction, inhibition of the overexpression of cathepsin L and atrogin-1 mRNA in addition to calpain 1, calpain 2, and MuRF-1 mRNA was confirmed. These findings suggest that the combination of electrical stimulation and high-load isometric contraction is effective as a countermeasure against muscle atrophy.
منابع مشابه
The combined effect of electrical stimulation and resistance isometric contraction on muscle atrophy in rat tibialis anterior muscle.
Electrical stimulation has been used to prevent muscle atrophy, but this method is different in many previous studies, appropriate stimulation protocol is still not decided. Although resistance exercise has also been shown to be an effective countermeasure on muscle atrophy, almost previous studies carried out an electrical stimulation without resistance. It was hypothesized that electrical sti...
متن کاملComparison of the Alterations of Gene Expression Related to Signaling Pathways of Synthesis and Degradation of Skeletal Muscle Protein Induced by Two Exercise Training Protocols
Background and Objectives: Skeletal muscle mass depends on the balance between synthesis and degradation of muscle protein, which changes with aging and disease. The aim of the present reserch was to examine the effects of two exercise training protocols on alterations of some genes involved in pathways of protein synthesis and degradation in order to achieve a more effective training program i...
متن کاملHindlimb unloading-induced muscle atrophy and loss of function: protective effect of isometric exercise.
The primary objective of this study was to determine the effectiveness of isometric exercise (IE) as a countermeasure to hindlimb unloading (HU)-induced atrophy of the slow (soleus) and fast (plantaris and gastrocnemius) muscles. Rats were assigned to either weight-bearing control, 7-day HU (H7), H7 plus IE (I7), 14-day HU (H14), or H14 plus IE (I14) groups. IE consisted of ten 5-s maximal isom...
متن کاملمقایسه ی تمرینات ایزومتریک ارادی و تحریک الکتریکی در تقویت عضله چهارسر ران متعاقب رفع بیحرکتی زانو در افراد بالای 40 سال
Introduction: Electrical stimulation has been used for many years in rehabilitation medicine to prevent atrophy or to increase muscle strength, but the use of electrical stimulation for muscle strengthening in research and clinical practice has become increasingly popular in recent years. The quadriceps femoris is the thigh muscle group that suffers the greatest amount of atrophy. This study ai...
متن کاملInhibition of calpain prevents muscle weakness and disruption of sarcomere structure during hindlimb suspension.
Unloading skeletal muscle results in atrophy and weakness. Inhibition of calpain activity during unloading reduced atrophy, but the impact on force generation has not been determined. Our hypothesis was that inhibition of calpain, through muscle-specific overexpression of calpastatin, would prevent the disruption of sarcomere structure and decreased specific force (kN/m(2)) observed during unlo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2011 شماره
صفحات -
تاریخ انتشار 2011